Subscribe to Blog
Email Address
 
Search for spindle load returned 15 results.
Pages:(2) 1 [2]

Key factors Determining Success of High Speed Machining (HSM)

September 12, 2015, 7:29 pm by Eldar Gerfanov (Admin)

As a developer of a very successful line of speed and feed calculators I sometimes get questions like : "I calculated speeds and feeds for a conventional toolpath. Got 5.5 cubic inches MRR(Material Removal Rate). And then I calculated S&F for the same endmill with HSM parameters turned on and got almost the same amount of  MRR! What is even the point in using HSM parameters?" -they ask.

I would like to clear some things up for my friends.
In this article I will explain exactly WHY HSM machining is better and HOW to achieve better productivity and tool life.

For starters here are the main features of a HSM-capable cutter:

As usual there are several components of HSM that need to be present in order for it to work to its fullest. These are:

a) Machine
b) Tool
c) Workpiece geometry
d) Workpiece material

I intentionally did not number these as each one of those is equally important.

Read More 

Lessson 2: Outside Profile, Cutter Radius Offset Compensation

January 28, 2014, 10:51 pm by Eldar Gerfanov (Admin)

In this tutorial we are going to explore different options and techniques when programming cutter movement.

Lets begin with a simple part shown in a drawing below.

Basically it is a rectangular piece 4.00x2.00
For the purpose of simplicity lets make the depth of our profile (z- dimention) 0.75"

We are going to use a 0.5" dia endmill, again because it is a very common size and is easy to do basic math with.

I took a liberty of puting locations for our part/toolpath, so it is easy to extract numbers from the drawing just by looking at it.

Notice the green rectangle. This rectangle represents the path that the center of the tool will have to take to produce the part with required dimentions.
The thing is: because endmills have certain diameter, the center of the tool must be always offset by its radius.

There are two ways of doing that.

Read More 

How to properly choose cutting parameters in less than ideal conditions

July 13, 2013, 4:40 pm by Eldar Gerfanov (Admin)

We all have manufacturer speed & feed charts and have used their recommendations.

But sometimes those charts just don't apply.

For example manufacturer charts assume you are using their endmills at a certain stickout length, flute length and at a certain depth of cut.

But in the real life you rarely match all these conditions.
Sometimes you need to use longer endmill. Sometimes your flute is longer than what manufacturer gave you speeds and feed for.

What i am trying to say is that whenever your real life conditions differ from "normal" you "need to adjust accordingly".
In fact this is what is printed below many charts.

Too bad not many sources tell you how and what to adjust.

While failure to adjust cutting parameters often leads to chatter, poor surface finish and even tool breakage, one of the biggest mistakes people do when machining is

Read More 

Pre-Hard Stainless & HSM Advisor Test

May 19, 2013, 11:37 am by Eldar Gerfanov (Admin)

Sevaral weeks ago i saw a post on CNCZone.

A HSMadvisor user Peter Neil used it to calculate cutting conditions for cutting a block of pre-hardened stainless steel.
His machine was Tormach.

Here is an exact copy-paste from that forum post:
_____________________________________________________________________________________

Did a test cut on the Tormach today using feeds & speeds from the latest version of the excellent HSM advisor.
To make it interesting, I did the cut using some 1.2085 pre-hard Stainless Steel as I have plenty of stock of it and have a job in mind for this, and wanted to see how it cut on the Tormach.
The material is like a stainless P20, at 16% Chrome/1% Nickel & 0.5% Sulphur (which makes it slightly free-er machining) and is hardened to around 33-35 Rockwell C, so I used the HSM advisor guidelines for machining P20 rather than Stainless. Cutter was a 10mm 4-flute Carbide TiAlN coated EM.

So...... ticking the HSM/Chip thinning option I got a speed of 5120 and feed of 2214mm/minute( 87 IPM). I used a DOC of 10mm and WOC of 0.5mm/0.020" - and turned off the flood cooling to machine it completely dry. The finish pass on the 1st level was 15mm DOC and 0.5mm WOC and slightly lower speeds/feeds.

Loaded up a 40mm x 63mm block , pressed the start button, and it went from this....





...to this!

Read More 

Advantages of using Hi-Helix endmills

November 23, 2012, 11:25 pm by Eldar Gerfanov (Admin)

Hi-helix end mills have several advantages inherited with their design.

Simple math says that a an endmill with 45 degree helix angle directs 50% of the cutting force downward versus  25% for a 30 degree end mill.

Main advantages are:

  • Higher rake angle directs more of a cutting force downward.
    This reduces side load on the cutter, that leads to less deflection and less tendency to chatter.
  • At high axial engagement (deeper depths of cuts) more flutes remain in the contact with the work piece. This leads to much smoother cut, again reducing tendency of the cutter to chatter.
  • High helix angle pulls chips upward and away from the cutting zone.
    This reduces chip re-cutting and helps prevent cutter from getting clogged up. This also allows to take deeper cuts and increases productivity.
  • Because of higher helix more of flute length is being used in the cut. Better surface finish is achieved even when using the same chip load.
    Generally an end mill with 45 degree helix can be fed 30% faster than equivalent one with 30 degree helix and still achieve same surface finish.

 

High helix end mills also have disadvantages that a machinist has to take into consideration:

  • With more of cutting force directed axially, the load on spindle bearings in downward direction is increased.
  • Tendency for both the end mill and the work piece to pull out is increased. So a more rigid tool holding and work clamping should be considered.
  • Higher helix end mills are also less stiff that regular helix end mills. This may cause more deflection and may become a problem when having to machine straight walls.
    This effect should be mostly diminished by lower side radial load, but it still needs to be considered in some cases.
Pages:(2) 1 [2]
Sing In

© 2009-2022 Eldar Gerfanov. All Rights Reserved.
© 2009 Eldar Gerfanov. Materials on this site are presented as is and are mostly for educational use.

You may freely reproduce information presented herein without any consent from me, provided you include link to this site.
In case when i am not the copyright holder, you may want to contact proper owner of material. Anyway, they are freely available on the Internet.
If you hold the copyright right for any of the materials on this site and want them removed, please contact me here